Manifestation of improvement in regenerator performance of a low and high-frequency pulse tube cryocooler using layered pattern

Abhinav B. Desai, R. Dutta, S. K. Verma, A. Dewasi, H. Agravat, V. Gupta, S. S. Mukherjee, J. Mishra, P. Panchal, P. Nayak, and R. Gangradey

Cryogenics = Temperature < 123 K (-150 °C)

000

Cryocooler = Refrigerator working within cryogenic temperature...up to 4 K and below at times...

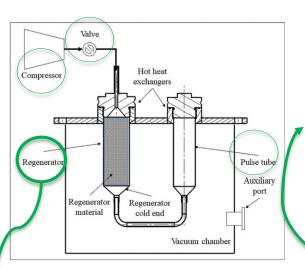
Based on various factors, types of cryocoolers

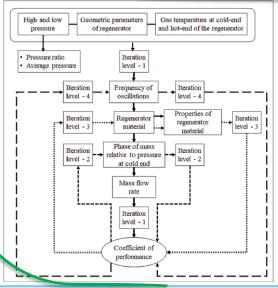
Wide Applications

- Cryopumps
- Cooling super-conducting coils and infrared sensors
- Space and Military equipment
- Magnetic Resonance Imaging (MRI)

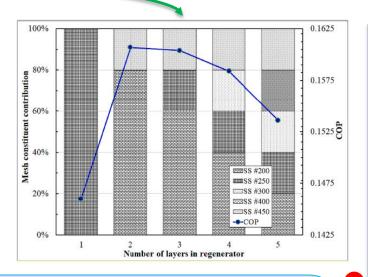
etc.

- GM type cryocooler (low freq.)
- Stirling type cryocooler (high freq.)
- JT- cryocooler
- Pulse tube cryocooler (PTC)




Manifestation of improvement in regenerator performance of a low and high-frequency pulse tube cryocooler using layered pattern

Abhinav B. Desai, R. Dutta, S. K. Verma, A. Dewasi, H. Agravat, V. Gupta, S. S. Mukherjee, J. Mishra, P. Panchal, P. Nayak, and R. Gangradey


Simplified schematic showing main four components of a GM type PTC

Algorithm to optimize regenerator

Improvement in performance by using layered pattern

- It is a heat exchanger, often terms as a heart of a cryocooler
- Pivotal in achieving low temperature
- Should have high heat capacity and heat transfer characteristics, low pressure drop
- Different types of material in different configurations are used
 - SS/phosphor-bronze/Cu mesh, lead granules, rare earth materials (Er₃Ni, HoCu₂...)
- Present work highlights improvement in PTC regenerator performance by using multiple material methodically...