SECTION - C

TECHNICAL SPECIFICATIONS OF STORES AND DRAWINGS.

Technical Specifications for Supply, Pre-Dispatch Inspection Tests, Installation, Acceptance Tests and Training at IPR of Quadrupole Mass & Energy Resolve Analyzer System for Plasma Diagnosis

INSTITUTE FOR PLASMA RESEARCH GANDHINAGAR, GUJARAT

382428

Page 1 of 6

<u>Technical Specifications of Quadrupole Mass & Energy Resolve Analyzer System</u> <u>for Plasma Diagnosis</u>

MASS & ENERGY RESOLVE ANALYZER SYSTEM FOR PLASMA DIAGNOSIS

1. APPLICATION NOTE:

Quantitative analysis of ion bombardment energy/ ion flux at the substrate is necessary to optimize the radio-frequency driven sheaths and controlling the bulk plasma parameters for applications in technological plasmas.

The experiments will involve multiple ions/neutrals of both positive /negative charge species, confined by external magnetic field and powered by different heating schemes using radio-frequency and high voltage pulsed DC sources, operated in continuous and pulse mode.

The probe will be inserted inside a magnetized plasma chamber produced by external electromagnet coils

Temporal information of energy distribution of ions and neutral species inside plasma is necessary for the above studies.

2. Technical specification:

Find below the technical specifications:

Sr.	Specifications					
No.						
1.	Mass Range:					
	1 amu to 200 amu or above (includes reactive gases)					
2.	Sampling Range:					
	Operating pressure range from 10 ⁻³ to 0.5 mbar					
3.	Mass Resolution:					
	Should be able to resolve masses with 1 amu resolution					
	- 1 amu at 5% peak height throughout the mass range					
	- The quadrupole mass filter should have a triple filter design with pre and post					
	RF only filters for enhanced abundance sensitivity and contamination					
	resistance					
4.	Detector:					
	 Should be able to detect both positive and negative ions 					
	- Count rate ~ 10 ⁷ counts/s					
5.	Signal gating:					
	- The detector should have integrated functionality for time-resolve					
	measurements during pulsed operation of plasmas					
	- It should be possible to synchronize/trigger with TTL pulses corresponding to a					
	pulse-dc or pulse-rf discharges					
	- The time resolution for obtaining the evolution of ion mass/ energy in time					
	relative to a pulse-dc/rf discharge should be minimum of 50 ns or better					
6.	Energy Analyzer:					
	- Should be able to measure ion energies on the lower side 0.5 eV to a maximum					
	of 1000 eV, – 1000 to + 1000 eV energy range.					
	- Energy pass band 0.25 eV					

133 00	Energy Resolve Analyzer System for Flasma Diagnosis					
	- 100%Transmission within pass band.					
	- Able to detect and analyze different species including radicals/ neutrals and					
	ionization cross-sections.					
	- System should have capability for threshold ionization mass spectrometry, 0-					
	150 eV electron energy and be software controllable.					
7.	Vacuum protection:					
	- Appropriate external / internal protection trip to be provided for safety, while					
	operating the system in residual gas analyses mode.					
8.	Mounting Flange:					
	- The system should be portable and adaptable to existing plasma systems.					
	- The preferable flange size: DN-63-CF 4 ¹ / ₂ inch (114 mm OD) Conflat type flange.					
9.	Magnetic field shielding:					
	- The instrument should be completely shielded from stray magnetic field up to a					
	maximum field of 100 mTesla					
10.	Probe insertion length inside plasma system					
	- Approximately 700 mm from probe mounting flange inside the plasma/vacuum					
	chamber					
11.	Probe axial manipulation (Optional)					
	- To vary the position of the probe head with respect to the plasma column, it is					
	preferable to move the probe head assembly under the vacuum					
	- Maximum stroke length of 100 mm is preferable					
12.	RC 7 interface to PC					
	- Up to 15 m with RS232 link.					
	- Up to 750 m with unbridged Ethernet link.					
	- 5 m Ethernet and 5 m RS232 cables.					
13.	Software					
	- Data-analysis software for mass and energy scan operated in continuous and					
	time-resolve mode and data storage system.					
14.	Power requirement: 100 - 240 Vac, 50 - 60 Hz, 1.0 kVA					

3. PRE-DISPATCH INSPECTION (PDI)

Following test has to be carried during PDI in presence of IPR representative:

- Detection of mass scan in different plasma (example: argon, helium, oxygen or other molecular gases)
- Detection of energy scan (1000 eV)
- Time resolve measurement of ion energy distribution in pulse discharge (1-10 kHz, 10-50 % duty cycle)
- Detection of negative ions (in electro-negative gases such as oxygen or SF6)
- Vacuum protection test (safety interlock checks)
- Test for magnetic shielding ~ 100 mTesla
- Demonstration of threshold energy mass spectrometry (example: oxygen, argon, helium)

4. INSTALLATION AND ACCEPTANCE AT IPR

Installation and acceptance tests mentioned below shall be carried by the vendor at IPR in one of the dedicated plasma setups provided in IPR Lab:

- Mass and energy scan of the instrument with known gases argon or oxygen plasma
- Operation of the system in magnetized plasma setup.
- Mass and Energy scan of the instrument in time-resolve mode

5. TRAINING

Vendor shall give following trainings to IPR personnel (4-5 IPR Personnel) at IPR.

- Operational training of the instrument
- Safety / Maintenance training
- Mass and energy scan in argon/oxygen plasma
- Time-resolve measurements in pulse-DC and/or pulse RF-capacitive plasma
- Training in threshold energy mass spectrometry measurement

6. **Delivery period:** 6 – 8 months from the date of Purchase Order

Compliance Statement

<u>Compliance Statement for Supply, Pre-Dispatch Inspection Tests, Installation,</u> <u>Acceptance Tests at IPR and Training Quadrupole Mass & Energy Resolve Analyzer System</u> <u>for Plasma Diagnosis</u>

Bidder must submit compliance statement dully filled with exact technical values of each specifications (Not with OK, CONFIRM, COMPLY, ACCEPTABLE) alongwith official seal and signature with their offer.

Sr. No	Parameters	Tender Specification	Vendor's Offered Specifications/V
			alues
1	Mass Range	1 amu to 200 amu or above (includes	
		reactive gases)	
2	Sampling pressure range	10 ⁻³ to 0.5 mbar	
3	Mass Resolution	1 amu at 5% peak height throughout the mass range	
4	Mass Filter	The quadrupole mass filter should have a triple filter design with pre and post RF only filters for enhanced abundance sensitivity and contamination resistance	
5	Detector	Should be able to detect both positive and negative ions, and radicals with count rate 10 ⁷ count/s.	
6	Signal Gating	 The detector should have integrated functionality for time-resolve measurements during pulsed operation of plasmas It should be possible to synchronize/trigger with TTL pulses corresponding to a pulse-dc or pulse-rf discharges 	
7	Temporal resolution	- The time resolution for obtaining the evolution of ion mass/ energy in time relative to a pulse-dc/rf discharge should be minimum of 50 ns or better	
8	Energy Analyzer	 Should be able to measure ion energies on the lower side 0.5 eV to a maximum of 1000 eV, - 1000 to + 1000 eV energy range. 	
9	Energy resolution	Energy pass band 0.25 eV100%Transmission within pass band.	
10	Threshold ionization mass spectrometry	- System should have capability for threshold ionization mass spectrometry, 0-150 eV electron energy and be software controllable.	

11	Vacuum protection	- Appropriate external / internal protection	
		trip required for safety, while operating the	
		system in residual gas analyses mode.	
12	Mounting Flange	- The system should be portable and	
		adaptable to existing plasma systems.	
		- The preferable flange size: DN-63-CF 4 ¹ / ₂	
		inch (114 mm OD) Conflat type flange.	
13	Magnetic field	- The instrument should be completely	
	shielding	shielded from stray magnetic field up to a	
)	maximum field of 100 mTesla	
14	Probe insertion length	- Approximately 700 mm from probe	
		mounting flange inside the plasma/vacuum	
		chamber	
15	Probe axial	- To vary the position of the probe head with	
	manipulation(Optiona	respect to the plasma column, it is	
	1)	preferable to move the probe head assembly	
	,	under the vacuum	
		- Maximum stroke length of 100 mm is	
		preferable	
16	RC 7 interface to PC	- Up to 15 m with RS232 link.	
		- Up to 750 m with unbridged Ethernet link.	
		- 5 m Ethernet and 5 m RS232 cables.	
17	Software	Data-analysis software for mass and energy	
		scan operated in continuous and time-	
		resolve mode and data storage system.	
18	Power requirement	100 - 240 Vac, 50 - 60 Hz, 1.0 kVA	

Authorised Signatory

Official Seal

Date :-